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INTRODUCTION 

Adaptive neural networks are considered to be promising architectures for real-time pattern recog- 
nition. Due to the large network sizes required for real-world problems involving imagery, these 
adaptive networks will be most useful for solving real-time problems if they are implemented in 
parallel hardware. The parallel processing capabilities of opto-electronic systems together with the 
relatively simple computational requirements of artificial neural networks make optics a natural 
candidate for hardware implementations of neural computing systems. Optical computing sys- 
tems however, typically suffer from optical device imperfections and system noise that can degrade 
performance. By employing adaptive on-line training techniques these noise sources can be in- 
corporated into an error-driven learning process to provide improved system performance. Neural 
networks therefore offer an opportunity to realize parallel optical computing systems that tolerate 
noise. In this report we describe two adaptive neural architectures capable of exploiting parallel 
optical hardware for multi-dimensional signal classification. 

The radial basis function (RBF) neural network has been successfully used in many multi- 
dimensional classification applications including 3D object recognition [1, 2], radar signal classifica- 
tion [3], face recognition [4, 5], fingerprint recognition [6], speech recognition [7], and handwritten 
character recognition [8, 9, 10]. Other applications of RBF neural networks include nonlinear 
function approximation [11, 12, 1], kernel regression [13], 'neural beamforming' for phased-array 
antennas [14, 15, 16, 17], equalization of time-dispersive communication channels, and nonlinear 
modeling and prediction for echo cancellation in the presence of nonlinear distortion [18]. Previous 
experiments have shown that RBF networks have similar classification performance to backpropaga- 
tion neural networks while typically incurring shorter training times [8]. Both all-electronic [19] and 
opto-electronic [20, 10] parallel hardware implementations of RBF networks have been reported. 

In chapter 2 of this report we begin by experimentally demonstrating an adaptive optical RBF 
classifier that facilitates on-line learning to offer robustness to noise and optical system imperfec- 
tions. The binary-input system performance is evaluated in the application of handwritten digit 
classification. The issues of system imperfections, device characterization, and system noise are 
discussed. The experimental results from our optical system are compared with data from a com- 
puter model of the system in order to identify critical noise sources and to indicate possible areas 
for system performance improvements. In chapter 3 we propose a grayscale-input data classifier 
for use with non-binary (e.g., 8 bit or analog) signals. The proposed implementation replaces the 



first layer hardware of the binary-input system with optical image subtraction optics that permits 
a true Euclidean distance measure to be computed. In chapter 4 we describe our ongoing work in 
the development of a multiscale optical wavelet transform system intended for use as an image pre- 
processor for the classifiers. It should be noted that Dr. Samuel P. Kozaitis from Florida Institute 
of Technology (FIT) has played a key role in our optical correlator and optical wavelet research 
and development. Conclusions and future directions of this work are then presented in chapter 5. 



BINARY INPUT NEURAL 
NETWORK CLASSIFIER 

In this chapter we present a binary-input data optical radial basis function neural network classifier. 
Many classifier applications either use binary data directly or may be converted to a binary data 
format with acceptable degradation including: optical character recognition, fingerprint identifica- 
tion, (edge-enhanced) template matching [21], and certain disparity computations. More details of 
this binary-input system design and its application to handwritten digit recognition can be found 
in earlier publications [10, 22]. 

2.1    Radial Basis Function Neural Networks 

A single-output multilayer neural network can be regarded as a continuous input-output mapping, 
SRN -+ sft. The network should behave well in the presence of noise and correctly generalize when 
a previously unseen input pattern is presented. To obtain these characteristics we may impose 
smoothing constraints on the input-output mapping as derived from regularization techniques and 
approximation theory. [1] Approximation theory attempts to provide an optimal solution to approx- 
imating a continuous multivariate function / (x), with an approximating function f (w,x) , where 
x is a N dimensional input vector and w is a parameter vector used to minimize the approximation 
error. The set of M input vectors comprise the training set on which the desired input-output 
mapping, {XJ -> /(x*); i = 1,..., M}, is defined. 

The RBF approximation scheme arises when certain symmetry assumptions are made about 
the smoothing constraints utilized in the regularized solution and corresponds to an approximating 
function of the form 

/(w,x) = :>>exp       V       > M 

<=i \      a> 

where {t*} is a set of center locations, {<n} are the corresponding center widths, and {ai} are a set 
of weighting factors. These three sets define the parameters of w. 
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Figure 2.1: Schematic diagram of RBF neural network for digit recognition. 

The approximation function given above can be represented in the form of a one-layer neural 
network as shown in Figure 2.1. The hidden layer RBF node response is given by 

Vi = exp 
-x-t i|2

> 

(2.2) 

where V is the neuron center and an is the neuron width. In contrast to conventional networks, which 
use inner products, the first layer requires the calculation of a Euclidean distance. In addition, the 
neuron response is not sigmoidal but corresponds to a exp (-x2/a2) function. For a multiple-output 
RBF network, the kth output node response to an input vector x is given by 

M f-\ /fc(x) = ^aifcexp   — 
x-t 112' 

i=l Of 
(2.3) 

where aik is the connection weight between the ith RBF node and the kth output node. A class-based 
clustering algorithm was applied to the training set to improve the first layer hardware efficiency 
and to eliminate redundant center locations[10]. 

One can train parameters {a*} and {aik} by minimizing the squared error at each output node, 
using a gradient descent technique. The squared error of the kth output node in the presence of 
the single input vector x' is defined as 

(4)2=[/fc(w,x')-/fc(x') 



The gradient descent update equation for the p    RBF width is 

A (~) = -aa{E{f (l^-t^l2) apexp {~^'^X (2-4) 

where aa is the acceleration constant for the width update. The update equation for the intercon- 
nection weight between the pth RBF node and the kth output node is 

|x'-tP|2 

A (opfc) = aa(E
l

k)
2 exp      '     2    '     , (2.5) 

aP 

where aa is the acceleration constant for the weight update. The iterative update equations are 
applied after each training input vector is presented. 

2.2    Handwritten Digit Recognition 

Handwritten digit recognition is used to evaluate the performance of our RBF neural network 
classifier. RBF classifiers have been reported with shorter training times and superior classifica- 
tion performance than either backpropagation networks or k nearest-neighbor classifiers for this 
problem. [8] Handwritten digit recognition can be viewed as a multidimensional classification prob- 
lem that has an output class for each of the ten digits. The unsupervised data preprocessing 
technique applied to each input and digit database is described elsewhere[10]. The training set 
consists of 600 handwritten digits and the testing set of 300 digits. 

To illustrate the capabilities of the RBF neural network in the application of handwritten digit 
recognition, we train and test a software version of the network described above. The training set 
inputs are presented sequentially to the network. The error at each output node is calculated and 
the update equations are applied to minimize iteratively the network errors. The mean squared 
error (MSE) measure is used to evaluate the system performance as the network trains. The MSE 
is given by 

MSE = l/pJ2\E(El
j)

2 

where P = 600 is the number of training set samples and K = 10 is the number of output 
nodes. The best results obtained were 100.0% recognition of the training set and 97.7% correct 
recognition of the testing set data. These recognition rates serve as a baseline metric for comparing 
the performance of the software RBF neural network with the optical hardware neural network 
that we present in the next section. 

2.3    Optical RBF Neural Network 

Here we describe an optoelectronic implementation of a parallel RBF neural network classifier. 
The hardware implementation of the RBF classifier is composed of two subsystems; the first is a 
parallel Euclidean distance computer, which we implement in optics. This subsystem is spatially 
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Figure 2.2: Dual-rail vector-matrix multiplier used as a parallel optical distance computer. 

multiplexed and makes use of two-dimensional SLM's to represent the center locations. The second 
subsystem evaluates the basis functions and performs the interconnect weighting between the RBF 
layer and the output layer. An electronic hardware design is proposed for implementing the post- 
processing subsystem. In our system the optically computed distances are captured with a CCD 
camera and the postprocessor is simulated in software. 

2.3.1    Parallel Optical Distance Computation 

The first layer of the RBF neural network computes the Euclidean distance between the input and 
each of the centers. The Euclidean distances {cf }, between vector x and the centers {t*}, can be 
written as 

N N 
|2 

<f = |x - tJ = E fa 4) = E<* 3  » (2.6) 

where 

d) = Xjt) + xjt) , (2.7) 

for the case of binary vectors. The overbar indicates a bitwise complement. We can implement 
this distance computation in parallel hardware by using the optical system shown in Figure 2.2. 
This system is spatially multiplexed, in contrast with previously demonstrated time-multiplexed 
optical disk-based systems.[20, 23] The light in LEG 1 of the system illuminates the input SLM, 
labeled x and is then collimated in the y direction and imaged in the x direction onto the centers 
SLM, labeled t). The result that appears immediately behind the centers SLM is the product 
term {xjt) ; i = 1,..., M; j = 1,..., N}, which is required in the distance computation. LEG 2 

of the system forms the products {x]tj} in a similar fashion. The results of these vector-matrix 
multipliers are simultaneously imaged onto a contrast-reversing liquid-crystal light valve (LCLV) 
SLM, where they are superimposed to form the terms {dj}. The result of the contrast reversal 

yields the {dj} terms and the final integration operation Y,jLidp is performed with a cylindrical 
lens. For real-time operation, electronically addressed one-dimensional SLM's would be used for 
the x and x inputs. 

6 
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Figure 2.3: Euclidean distance vs. template number for a single input image (handwritten 4). a) 
Actual distance and b) optically computed distance. 

Figure 2.3 shows the actual (a) and optically computed (b) distances between an input vector 
representing the digit 4 and the 198 center locations (templates). Although large errors are present 
in the optically computed distances, we observe that the distances are generally smallest for the 
appropriate template numbers. The accuracy of the optical distance computation can be quantified 
using the formula 

i/MEr=1(^-rtf/2 

—, (2-8) ^J-'rms — 
l/MZiLidf* 

where dfpt are the Euclidean distances between the 300 testing inputs and the 198 centers calculated 
from the optical system and df1* are the actual Euclidean distances. The average rms distance 
error over the testing set for our optical system is measured to be 29%. This large 29% distance 
computation error will lead to a large classification error in our system. The errors present in the 
optical distance computation are due to device imperfections and system noise, which are discussed 
in the next section. 

2.3.2    Parallel Basis Function Evaluation 

We now consider the second subsystem of the RBF classifier, which performs the basis function 
evaluation and output interconnect weighting. The block diagram in figure 2.4 shows a possible 
electronic implementation of the subsystem for the single output case. [20] Each array of 198 modules 
provides a single network output; therefore, we require ten such arrays for our application. Note 
that all of the proposed operations are local, with exception of the global sum, and are compactly 
achievable in analog VLSI circuitry. It is also possible, however, that digital techniques would be 
desirable in order to increase processing speed and/or accuracy within the postprocessor. In this 
nonadaptive postprocessor the network center widths and interconnection weights can be trained 
off line in software and then downloaded to the chip during operation. In our experiments the 
electronic postprocessor chip is emulated in software. 

A software RBF neural network was trained by the use of the preprocessed training data. The 
center widths and interconnect weights are taken from the trained network and loaded into the 



Class Optical Software 
(Correct out of 30) 

0 0 29 
1 0 30 
2 0 28 
3 4 29 
4 30 29 
5 28 28 
6 5 30 
7 26 30 
8 0 30 
9 0 30 

Total 93 293 
Overall recognition 31.0% 97.7% 

Table 2.1: Performance comparison between optical RBF classifier and software RBF classifier. 

software postprocessor emulator. Then, using the optically computed distances of the test set, 
we evaluated the optical neural network classifier performance. The overall recognition rate for 
the RBF classifier is 31.0%. This very poor performance does not agree with the 97.7% testing 
recognition rate measured from the RBF network software simulations presented in Section 2.2. 
A classwise comparison between the performances of the RBF network that uses the optically 
computed distances and the perfectly computed distances is shown in Table 2.1. It is evident that 
the distance errors caused by the optical system imperfections have a catastrophic effect upon the 
overall system performance. Although it may be possible to use a detailed model of the optical 
system to compute the center widths and interconnect weights more accurately, the measurement 
of system parameters would be difficult to make for highly integrated, compact systems. More 
importantly, temporal changes in the system can greatly effect the system operation. Therefore it 
is highly desirable to perform on-line adaptation of the network parameters. 

2.4    Noise Characterization and Computer Modeling 

We now present a noise analysis of the optical RBF system. This analysis will help to identify 
the limiting noise sources that lead to the large decrease in performance of the optical system as 
compared to the software RBF neural network. To understand the effects of each noise term on 
the overall system performance better, we have developed a detailed computer model of the optical 
system that uses parameters taken from the actual optical hardware. The noise terms that are in- 
corporated in the model include optical system imperfections (illumination nonuniformities, input 
and centers SLM finite contrast, and optical system point-spread function), LCLV response (inten- 
sity transfer function and spatial resolution), and detector response (analog-to-digital quantization 
error and detector random noise). The following subsections present the mathematical expressions 
used to represent each of these noise terms in our computer model. Each noise term is characterized 
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Figure 2.4: Non-adaptive RBF postprocessing chip for a single-output network, 

in terms of its effect on the optical distance computation as given in Equations (2.6) and (2.7). 

2.4.1    Optical System Noise Characteristics 

Illumination Characteristics 

There are two different Gaussian laser beam profiles present in each vector-matrix multiplier. This 
is due to the cylindrical optics that perform collimation along one axis and imaging in the other. 
The resulting anamorphic beam profile can be measured directly behind the plane of the centers 
mask SLM. The effect upon the distances can be expressed as 

d)= dUrfxjt) + GiU,i)T£jt) 

where 

Gi(j,i) =exp jj-jo) (i - io) 

V2a2 

dj is the optically generated estimate of dp and (jo, io) represents the midpoint of the centers SLM 
array. The imaging axis profile o\ is along the length of the one-dimensional input SLM. Collimating 
axis beam profile oi is proportional to the beam expansion in the vector-matrix multiplier and is 
orthogonal to a\. In the LCLV read-out portion of the system there is another Gaussian beam 
profile (circular) which corrupts the distance computation according to 

N 

9 



where 

G2{j,i) =exp (j ~ Jo) + (i 
N/2<73 

and dl is the optically generated estimate of d%. The values shown for the a parameters in Table 
2.2 have been normalized with respect to the SLM pixel dimensions. 

SLM Characteristics 

In our system we made use of film negatives to act as SLM's for both the center locations and the 
input vectors. By employing film masks we can achieve very high contrast (> 100:1) and uniformity 
over the entire mask. While it may be realistic to use these static SLM's for the center locations 
in a dedicated real-time optical processor, an electronically addressable SLM would generally be 
required for the input vector SLM's. Electronically addressed SLM's typically have contrast ratios 
in the range of from 10:1 to 100:1. The effect of finite contrast SLM's on the distance computation 
can be represented by 

q = Xj + t) + 
'1-3 

Or 
+ Xj + 

Or 

where Cr is the contrast ratio. 

Liquid-Crystal Light Valve Characteristics 

The device used in our system to reverse the contrast is a Hughes LCLV (made before 1987). In 
our experiment the contrast, uniformity, and resolution were critical characteristics for the LCLV 
device. The contrast is determined by the transfer function of the device. The intensity transfer 
function of our contrast-reversing LCLV is shown in Figure 2.5 along with the response curve used 
in the computer model. The effect of the LCLV response on the optical distance computation can 
be represented as 

N   

where TF is the transfer function shown in Figure 2.5. 

We measured our LCLV resolution to be 8.0 lines/mm by using the Air Force resolution target. 
The pixel pitch in our centers masks is 63.5 /xm which requires a minimum resolution of 15.8 
lines/mm at a l.Ox magnification. The effective LCLV aperture over which uniform contrast 
reversal could be achieved was 15.0ram in width, which allows us to image the centers masks onto 
the LCLV at an increased magnification. The factor that limits this magnification is nonuniformity 
in the active area of the LCLV.[24] The LCLV resolution limit and optical system point-spread 
function are modeled together as a Gaussian blur that affects the optical distance computation 
according to 

tj = h{i,j)*{Xjt)+TS]fy, 

10 
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Figure 2.5: Measured and modeled LCLV transfer functions. 

where the * symbol denotes a convolution and h(i,j) is an n x n Gaussian convolution kernel. In our 
system the Gaussian kernel width is measured to be ab = 0.85 pixels of the centers SLM (labeled 
t) in Figure 2.2) which can be adequately modeled with a 3x3 pixel kernel. Although the results 
presented here depend on the characteristics of the LCLV used, an increased uniform response area 
and higher speeds can be easily achieved in newer optically addressed SLM's.[25] 

Detector Noise and Dynamic Range Characteristics 

The effects of random detector noise on the optical distance computations can simply be represented 

by 
N 

^ = £(4 + %), 
J=I 

where rjd is a random variable with a Gaussian distribution. The detector noise is modeled as 
stationary additive noise and is a result of detector dark current. The noise variance was assumed to 
be on the order of 2% of the detector's full scale range.[26] The analog-to-digital (A/D) quantization 
error also effects the distance computation. This noise source can be represented as 

N 

* = £(4/4™J(2 nbits 
), 

where Tuu is the number of quantization levels in the A/D conversion. Eight bit quantization 
was used in our optical RBF system. These noise sources can also represent the effects of reduced 
accuracy in the analog realization of the electronic postprocessor. 

Dual-Leg Beam Ratio 

Another important error source that affects our optical distance measurements is the ratio of light 
intensities between the two legs {LEGS 1 and 2 as shown in Figure 2.2) in the optical distance 

11 



Parameter Measured Values 

Nonuniform Illumination 
Imaging Axis, o\ 97.5 pixels 

Collimating Axis, 02 131.7 pixels 
Read-out Beam, CT3 340 pixels 

SLM Finite Contrast, Cr > 100:1 
Leg Intensity Ratio, /?i//?2 0.96 

LCLV Blur, ab 0.85 
Detector Noise, ad 0.02 

A/D Quantization, 2ntnts 8 bits 

Table 2.2: Measured error values from optical system. 

computer. The impact of this light intensity ratio on the optical distance computation can be 
expressed as 

where /?i//?2 is the leg intensity ratio. We make use of a polarizing beam-splitter to direct or- 
thogonally polarized light into each of the two legs in order to minimize interference fringes at 
the summing beam-splitter. Placing a wave plate before the polarizing beam-splitter allows us to 
adjust the leg intensity ratio. 

2.4.2    Optical System Model 

Using our computer model of the optical system together with the measured system noise param- 
eters shown in Table 2.2, we generate a set of simulated optical testing set distances. As in the 
previous section, we again use the center widths and interconnect weights computed off-line from 
the software RBF neural network to test the system. This time we use the simulated optical dis- 
tances instead of the actual optical distances. Our testing recognition result is 29.0%, which agrees 
well with the recognition rate of 31.0% obtained with the actual optically computed data. The 
class-wise performance comparison between the model predictions and the optical system is shown 
in Table 2.3. This result suggests that we can now accurately predict the system performance of 
our optical hardware RBF neural network by using our computer model. Furthermore, the model 
allows us to simulate other system operating points from which we can deduce which noise terms 
are most critical for the overall system performance. These issues will be pursued further in the 
next section. 

2.5    Adaptive Optical Radial Basis Function Neural Network 

As we have seen in Sections 2.3 and 2.4, our optical hardware network performance greatly suffers 
because of errors in distance computation caused by optical system imperfections and noise. We 
expect that by training our optical system in the presence of these imperfections, the network will 

12 



Class Optical      Model 
(Correct out of 30) 

0 0 0 
1 0 0 
2 0 0 
3 4 1 
4 30 30 
5 28 28 
6 5 2 
7 26 26 
8 0 0 
9 0 0 

Total 93 87 
Overall recognition rate 31.0% 29.0% 

Table 2.3: Performance comparison between optical and modeled optical RBF classifier. 

compensate for these errors and its performance will more closely match that of the software RBF 
network. In this section we consider an adaptive postprocessor[20] and present computer model 
comparisons between adaptive and non-adaptive RBF classifier systems. 

2.5.1    Adaptive Postprocessor 

By modifying the non-adaptive single-output postprocessor presented in Section 2.3, we can incor- 
porate error feedback in order to implement on-line network training. Using the electronic module 
shown in Figure 2.6 we can directly implement the gradient descent update Equations (2.4) and 
(2.5). In addition to error feedback for each module, we also require accumulation registers for 
adapting both the RBF widths and weights in an iterative fashion. As in the non-adaptive case we 
require ten arrays, each consisting of 198 modules for the optical fully-parallel implementation of 
the digit recognition RBF network shown in Figure 2.1. 

2.5.2    Influences of Noise on System Performance 

Using a computer model of the optical Euclidean distance computation subsystem and its ability 
to include the effects of optical system error sources, we have studied the effects of these errors on 
the optical RBF system's recognition performance. Optical systems that use adaptive or on-line 
training to compensate for these errors can be compared with optical systems that are trained offline 
in order to estimate the utility of adaptive training in this application. We now present computer 
model performance comparisons between the adaptive and non-adaptive hardware systems. Two 
types of error models are quantified for each of the error sources found to be most critical in our 
system. The first error model assumes the optical system to be ideal (error free) except for the 
error under consideration. This case is represented by the circular symbols in Figures 2.7-2.10. The 
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Figure 2.6: Adaptive RBF postprocessing chip module. 
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Figure 2.7: Predicted recognition rate versus imaging axis beam profile. Circles indicate isolated 
error model, squares indicate multiple error model, solid curves indicate adaptive case and dashed 
curves indicate non-adaptive case. 
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Figure 2.8: Predicted recognition rate versus collimating axis beam profile. Symbols are as defined 
in Figure 2.7. 
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Figure 2.9: Predicted recognition rate versus LCLV readbeam profile. Symbols are as defined in 
Figure 2.7. 
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Predicted recognition rate versus leg intensity ratio. Symbols are as defined in Figure 

second type of error model predicts the influence of the error under consideration, given that all 
other parameters are fixed at their values as measured from the optical system and as shown in 
Table 2.2. This case is represented by the squares in Figures 2.7-2.10. Associated with each type of 
error model are two curves; the solid curve indicating the system testing performance when trained 
in the presence of the imperfection (adaptive on-line training), and the dashed curve shows the 
testing results when trained off line as in the nonadaptive case. The measured system operating 
points are indicated in each plot by a vertical line. 

Figure 2.7 shows the predicted system testing recognition rate as a function of the imaging 
axis beam profile, and Figure 2.8 shows the result for the collimating axis case. As expected, the 
performance in both cases degrades with an increasingly nonuniform beam profile. It can also be 
observed that the on-line training significantly improves the performance as compared to the off- 
line training. Although the imaging axis error effects all of the centers by the same degree, it will 
reduce a portion of the system's discrimination ability if the pixels on the edge of the SLM are not 
of sufficient intensity to transmit through the LCLV. The effect of the collimating beam error has 
more influence on system performance because it affects each center location vector to a different 
degree. It can be shown that the digit classes with centers near the outer edges of the SLM are more 
likely to be misclassified (e.g., see Table 2.1), attesting to the spatial dependence of the centers. 
Although it may be possible to use this a priori information to design a more robust sequence of 
the centers, it is more desirable to correct the beam profile by the use of increased beam-expansion, 
diffractive optic elements, or holograms. The predicted system performance in the presence of the 
LCLV readout beam profile is shown in Figure 2.9. The readout profile is shown to have little 
impact on the system performance. The system performance does not degrade appreciably until 
the SLM contrast Cr falls below 10. This differs from the results of previous systems[20], in which 
finite SLM contrast was found to be a dominant error source. 

The predicted results of the leg intensity ratio are presented in Figure 2.10. It is interesting to 
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Class Optical Model 
(Correct out of 30) 

0 30 29 

1 30 30 

2 22 23 

3 28 28 
4 30 30 

5 21 26 

6 27 28 

7 30 30 

8 30 30 

9 30 30 

Total 278 284 

Overall recognition 92.67% 94.67% 

Table 2.4: Performance comparison between adaptive optical RBF classifier and the modeled adap- 

tive optical RBF classifier. 

note that in the ideal system case the adaptive training fails to outperform the non-adaptive system. 
This result confirms the requirement for a dual-leg system to eliminate biases in the input data. The 
detector noise and dynamic range were found to have little impact upon the system performance. 
The detector noise level is considered negligible compared with the other noise terms. Simulation 
results indicate that a SNR of « 4 was tolerable in both the adaptive and non-adaptive cases. The 
system model also indicates that the network performance does not severely degrade until fewer 
than three bits are used. These results indicate that an analog electronic postprocessor should have 
adequate accuracy for this system. 

2.5.3    Adaptive Optical RBF Neural Network Results 

We now use the adaptive system model and the measured noise parameter values from the exper- 
imental optical system in Table 2.2 to make predictions about the adaptive system performance. 
The model predicts an overall testing recognition rate of 94.7% when trained on-line. Using the 
actual optically computed testing distances together with the on-line learning gives a final recogni- 
tion rate of 92.67%. Table 2.4 shows the classwise recognition performance corresponding to these 
results. Again the model is in excellent agreement with the experimental system performance, 
illustrating the utility of the computer model predictions. The adaptive optical system provides us 
with nearly 60% increase in recognition performance as compared with the non-adaptive optical 
RBF classifier, attesting to the significant improvement imparted by adaptive on-line training. 
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GRAYSCALE INPUT NEURAL 
NETWORK CLASSIFIER 

In this chapter we propose a grayscale input distance computer for use with our RBF classifier. 
We show that by modifying the distance computation optics of the binary classifier system we can 
develop a grayscale input capable classifier. In essence we replace the XOR functions with optical 
image subtraction optics. In this chapter we briefly present an appropriate optical image subtraction 
method and the characterization results of the phase shifting device employed in the experiment. 
It is expected that the binary-input neural hardware will be more tolerant to internal system error 
sources than will a grayscale-input implementation due to the dynamic range limitations of the 
optical detectors and the summation of multiple input channels into a single output channel. 

3.1     Optical Image Subtraction 

Because of its simplicity we chose to perform the real-time image subtraction by a phase shifting 
method[27], rather than by Fourier methods[28, 29] or electrooptic (via SLMs) effect methods[30]. 
Reviews of optical image subtraction techniques are given in Ebersole[27] and Liu and Chao[31]. 

In a coherent optical system, the simplest way to achieve image subtraction is by a phase 
shifting method. As shown in Figure 3.1 two paths are split from a single coherent source and 
each illuminates an image. A phase plate or variable phase retarder is placed in one of the two 
paths to create a phase delay of -K which multiplies the image in that path by ei7r = -1. The image 
subtraction is completed when the two paths are added together in the combining beamsplitter. The 
Euclidean distances {<f}, between the input vector x and the centers {t*}, can be directly computed 
as <f = |x - t*| by placing the input vector in one path and the centers in the other path. We make 
use of a variable phase retarder in order to easily adjust the phase delay without disturbing the 
position of the mounted optical components. The capability of phase delay adjustments also permits 
us to perform software error analysis over a wide operating range. We begin by characterizing the 
liquid crystal variable retarder to be used in our system. The detector array (i.e., postprocessing 
chip) detects the magnitude of the amplitude image subtraction, which is our desired distance 
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3.2    Variable Retarder Characterization 

In this section we characterize the Meadowlark Optics liquid crystal variable retarder. The objective 
is to measure the amount of retardance the device produces as a function of applied voltage in order 
to quantify the system performance degradation likely to be introduced by errors in the phase delay. 

3.2.1     Operation 

The retarder operates on the principle of birefringence. Birefringence is the property where a ma- 
terial exhibits two different indices of refraction along two different optical paths. These refractive 
indices are termed the ordinary refractive index, n0, and extraordinary refractive index, ne. Recall 
the equation for the speed of light, v, traveling through some material is v = c/n where c is the 
speed of light in a vacuum, and n is the index of refraction parallel to the axis of polarization of 
the light. For the type of material used in this retarder, ne > n0, and thus ne is termed the slow 
axis and n0 is termed the fast axis. Light polarized parallel to the slow axis travels slower than 
light polarized parallel to the fast axis. 

The retarder consists of a liquid crystal material sandwiched between two glass windows. Each 
of these windows has a layer of optically transparent, electrically conductive indium tin oxide 
(ITO) applied. The liquid crystal is a birefringent material whose birefringence is dependent upon 
the alignment of the liquid crystal molecules. This alignment can be changed by applying an 
electric field, via the ITO, which changes the orientation of the molecules. The long axis of the 
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Figure 3.2: Optical image subtracter used as a grayscale-input parallel distance computer. 
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Figure 3.3: Retarder used as an attenuator. 

molecules determines the slow axis, and with no electric field applied, the molecules lie parallel to 
the glass windows and exhibit a maximum index of refraction, ne. When an electric field is applied, 
the molecules start to align themselves with the field which decreases ne, and thus decreases the 
amount of birefringence. 

To demonstrate a use of the retarder, assume linearly polarized light, whose axis of polarization 
is aligned between the fast and slow axis of the birefringent material, is incident on the retarder. 
This causes the phase of one orthogonal component of the light to lag the other which changes the 
polarization of the light. By varying the electric field, one can obtain various output polarizations. 
These polarizations range from linear to elliptical to circular, depending on how much one orthog- 
onal component is lagged behind the other. This change in polarization can be used to make the 
device act as a variable attenuator by placing a polarizer and analyzer before and after the device, 
respectively. If the incident light's axis of polarization is 45 degrees from the slow (or fast) axis of 
the retarder (Figure 3.3), the resulting transmittance, T is the following function of retardance, R: 

T = sin2(Ä/2). 

Another use of the retarder is to adjust the optical path length of light. If one aligns the axis 
of polarization of linearly polarized light to the slow axis of the retarder, that polarization will 
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undergo a phase change caused by ne. Thus, varying ne by applying an electric field across the 
liquid crystal material, one can dynamically adjust the optical path length. This is how the retarder 
is to be used in the experiment. 

3.2.2    Procedure 

The most apparent way to make the measurement was to setup an interferometer, place the device 
in one of the optical paths of the interferometer, and measure the fringe movement as a function 
of voltage. The fringe movement is proportional to the change in optical path length. A Michelson 
interferometer was to be used with a digital CCD camera (Cohu 4110) that would measure the 
fringe movement. The movement is characterized by 

Ad = N(X/2), 

where (Ad is the change in the optical path, N is the number of fringes one of the fringes moved, 

and A is the wavelength of the light used. 

A cable had to be ordered that interfaced the camera to the frame buffer board inside the PC. 
While waiting for the cable (and the retarder), software was written to find and track the sinusoidal 
fringes, and the interferometer was fabricated. Since the CCD camera is also capable of producing 
RS-170 analog output, and the frame buffer board we had was also capable of frame grabbing 
analog video, some preliminary tests of the test system could be made. 

It became readily apparent the software was subject to locking onto local maxima if the re- 
sulting frame grabbed image was noisy. If the noise was not caused by the A/D converters of 
the framegrabber, and hence would appear in the final setup, either the images would have to be 
averaged, and/or an algorithm would have to be added to find the true peak of the fringe. A 
simple global maxima algorithm could not be used since we needed to find the same peak each time 
which may have an amplitude less than a neighboring peak. There was also a logistics problem in 
getting the correct cable for the camera. While waiting for supplies, it seemed prudent to explore 
alternative methods for making the measurements. 

A second way of making the measurements exploits the fact the retarder can vary the polar- 
ization of linearly polarized light. Using the principle shown in Figure 3.3, the setup in Figure 
3.4 would allow us to measure the amount of retardance the device produces. This has several 
advantages over the previous method. First, the controlling software is greatly simplified. Second, 
the dynamic range and accuracy of an optical power meter is greater than the CCD camera. The 
disadvantage is that a method needed to be produced to align a linearly polarized beam 45 degrees 
from one of the optical axis of the retarder. Because of the advantages of this approach, and the fact 
that when the cable did arrive, it did not work with the camera, the above method was abandoned, 
and this one was used to make the measurements. 

A five step process was used to align the system shown in Figure 3.4. First, circularly polarized 
light was required. This will become clear when step (4) is discussed. A quarter waveplate was used 
to turn the linearly polarized light into circularly polarized light. Although the HeNe laser was 
linearly polarized, the contrast ratio is only approximately 500:1. This was cleaned up by adding 
a Glan-Thompson polarizer with a contrast ratio of approximately 100,000:1 (note: all polarizers 
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Figure 3.4: Variable retarder characterization test setup. 

used were Glan-Thompson or Glan-Taylor). Correct polarization was confirmed by adding another 
polarizer and rotating it while monitoring the power of the light with an optical power meter. When 
the light was circularly polarized, there was no change in the optical power seen by the meter. 

In step (2), a polarizer, PA, was rotated until its axis was aligned to the fast (or slow) axis of 
the retarder. This was verified by placing an analyzer, PB after the retarder and monitoring the 
power of the light. When PA is aligned properly, there will be no change in optical power when 
voltage is applied to the retarder. See Figure 3.5. 

Step (3) added a quarter waveplate, WP, to turn the linearly polarized light into circularly 
polarized light. It was verified using polarizer PB as in step (1). Since a quarter waveplate 
turns linearly polarized light when its axis is 45 degrees from the light's axis of polarization, the 
waveplate's axis is now aligned 45 degrees from the axis of the retarder. 

Step (4) aligns PA to that of WP. PA and PB are both rotated until maximum power is incident 
on the meter. The light going into PA must be circularly polarized or PA will be rotated until its 
axis is aligned to the axis of the linearly polarized light. PA is now properly aligned. 

Step (5) aligns the analyzer, PC, perpendicular to PA. Using the graph that came with the 
retarder, apply the proper voltage that will yield zero retardance. Then, rotate PC until minimum 
power is incident on the meter. Adjust the voltage on the retarder to verify it's not retarding. This 
can be determined by observing the meter. If the retarder was retarding, the output polarization 
would be a small ellipse that would allow light to go through PC, and so if adjusting the voltage 
to the retarder gets it closer to true zero retardation, there would be a decrease in the power 
measured by the meter caused by the minor axis of the ellipse getting smaller and hence the 
polarization becoming closer to linear. Step (5) would then be repeated until an absolute minimum 
is read by the meter. 
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3.2.3    Results 

After taking a set of measurements, it was clear there was noise present in the system^either the 
laser or the power meter, or both. Eleven sets of data were taken over three days to be averaged 
together. However, each day's worth of data differed slightly. The peaks in the waveforms occurred 
at different levels. This was probably caused by the varying temperatures we experienced in the lab 
due to faulty air-conditioning which affected the detector's responsivity, and the laser's output. To 
account for this, the data was normalized before the averaging. Figure 3.6 shows the final output. 
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24 



WAVELET PREPROCESSING 

In this chapter we present a multiscale optical wavelet transform for use as a preprocessor for our 
optical neural network classifier system. The purpose of the preprocessor is to extract important 
features from the input signal and provide these features to the classifier. The performance of the 
classifier is partially determined by the choice of features provided as input. In applications using 
focal plane imagery, the image pixels themselves can be used as features. However, image pixels 
are typically numerous and form an unnecessarily large feature set. This large feature set requires 
an unacceptably large neural network. 

Edges are important features in an image and are therefore usually a better choice for input 
features. They define object boundaries as well as textures. In addition, they form a more compact 
feature set than the image pixels. To represent objects and textures of different sizes requires 
multiscale edge features [32]. Wavelet transforms, currently popular in signal processing, perform 
a multiscale or multiresolution analysis of an image. The resulting wavelet representation contain 
edge features at multiple scales. 

The remainder of this chapter describes an imaging system based on the joint-transform corre- 
lator (JTC) that produces a multiple wavelet-scale version of an input image. In the next section, 
we briefly describe the general theory of a conventional JTC and then we extend the discussion to 
multiple inputs. Next, we describe how the multiple-input JTC is used for multispectral analysis 
using wavelets. Finally, we show some simulations and presented our conclusions. 

4.1    Conventional Joint Transform Correlator 

To perform the correlation operation with a JTC, functions are encoded in the input plane. A 
schematic diagram of a conventional JTC is shown in Figure 4.1. To perform the cross-correlation 
between the images b(x,y) and d(x,y) they are centered at x = ±a as shown in Figure 4.1 and 
Figure 4.2a. A lens produces the Fourier transform when the input plane is illuminated with 
coherent light. In the Fourier plane, the complex light field is 

U = B(P,q)ejap + D(p,q)e-jap , 
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Figure 4.1: Schematic diagram of a conventional joint-transform correlator. 

where B(p, q) is the Fourier transform of b(x, y), and similarly for d(x, y). A square-law device such 
as a liquid crystal light valve is placed in the Fourier plane before an additional Fourier transform 
is performed. The output intensity distribution from a square-law detector can be written as 

\U\2 = UU* = [B(p, q)ejap + D(p, q)e~:>ap][B{p, q)ejap + D(p, q)e-jap}* . 

Multiplying terms, taking the Fourier transform with a second lens, and grouping terms results in 

I = b(x, y) <g> b(x, y) + d(x, y) <g> d(x, y) + b(x, y) ® d(x + 2a, y) + d(x, y) <g> b(x - 2a, y) , 

in the output plane, where 0 indicates the correlation operation. The first two terms are the 
autocorrelations of the input functions and appear on the optical axis. The third and fourth terms 
are the cross-correlation between the two input functions and appear at x = ±2a. This is shown 
in Figure 4.1 and Figure 4.2b. 

To perform the wavelet transform at one scale using a JTC, one input is the image of interest 
and the other is the wavelet function. The wavelet transform at a particular scale then appears 
at the output of the JTC. Because wavelets have zero mean, this may present a difficulty in the 
implementation. To remove the DC component from the wavelet function, it was experimentally 
shown that the input functions could be encoded in phase to eliminate the DC component.[33] 
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Figure 4.2: Input and output planes of a JTC showing locations of inputs and outputs (a) input 
plane (b) output plane. 

4.2    Multiple-input Joint Transform Correlator 

4.2.1    Theory 

We considered a JTC with the use of any number of inputs arranged along a line as the inputs. 
We used the JTC as in Figure 4.1 but considered n inputs separated by a in the input plane 
arranged along the a;-axis as shown in Figure 4.3. The images were labeled ai(x,y) to an{x,y), 
with the center image labeled as a{n+l)/2{x,y). Using this configuration, the complex light field in 
the Fourier plane was 

U = Ai(p,q)e^ap + A2(p,q)e^ap + ---As±i(p,q) + ---An(p,q)e~^^ap . 

The output intensity distribution from a square-law detector was written as \U\2 = U x U* . 
Multiplying n x n terms, taking the Fourier transform, and grouping terms resulted in In - 1 
locations in the output plane where a correlation response would occur. The output plane was 
described as n 

^üi{x,y) <8>a,i{x,y) 1 = 
Li=l 

+ 

n-1 n-2 7i—(n—1) 

Y, Oi(x,y) ® ai+i{x + a,y) + J2 <X'V) ® a^x + 2a, y) + • • •    £    Oi{x,y) 0 an-i(x + {n- l)a,y) 
i=l 

'n-1 

+ 

i=l 

n-2 

i=l 

n—(n—1) 

J2 ai+i(x,y) ® Oi(x -a,y) + J2 ai+2(x,y) ®ai(x - 2a,y) + • • •    £    an-i(x,y) ® at(x - (n - l)a,y) 

(4.1) 
i=l i=l i=l 
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Figure 4.5: Input plane of multispectral example. 

The first term in brackets in Eq. 4.1 contains the DC terms which is the sum of the autocorre- 
lations of all the input images. The second term in brackets correspond to n - 1 terms to the left 
of the DC term which are shown in Figure 4.4; each one of these terms is separated by a distance 
a. The third term is similar to the second but corresponds to the right of the DC term in Figure 
4.4. In addition, the terms on each side of the DC term are the same but rotated by 7r radians as 
in a conventional JTC. 

4.2.2    Multispectral example using wavelets 

Under certain conditions the input arrangement in Figure 4.3 may produce a multispectral version of 
the input image corresponding to multiple wavelet scales. We considered an example that produced 
a version of an input image that corresponded to two wavelet scales. In other words, the output 
image corresponded to the sum of the correlations of the input image and two different wavelets. 
To perform this type of operation we referred to Figure 4.3 and set n = 5, and a^{x, y) = 0. We 
considered the input image f(x, y) at locations a\(x, y) and a2(x, y), so f(x, y) = ai(x, y) = a2{x, y). 
Finally, we set a wavelet corresponding to one scale w\{x, y) = a4{x, y), and the wavelet of another 
scale w2{x,y) = as(x,y). The configuration in the input plane is shown in Figure 4.5. 

The response in the output plane was obtained by substituting the appropriate variables in Eq. 
4.1, and the output plane was represented schematically as shown in Figure 4.6. The third term 
from the DC is the term of interest here. It was the sum of correlations of the input image and two 
different wavelets. 
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Figure 4.6: Output plane of multispectral example. 

4.3    Simulation Experiments 

We simulated the operation of a JTC used for multispectral analysis using two scales. We used the 
input image shown in Figure 4.7, and a Bessel-Gaussian wavelet.[33] The Bessel-Gaussian wavelet 
was considered because it would be useful for rotation-invariant pattern recognition because it is 
circularly symmetric. It was described as 

TaW GO = Ta J° G ' GXP r Y 
2aä) 

where a is related to the width of the bandpass response, a is the scale factor, and r is the distance 
form the origin. 

We performed the simulation with an input image corresponding to the configuration of Figure 
4.5 using a total of 512 x 512 pixels. The image of the plane was used for f(x, y) and contained 50 
x 50 pixels and a was set to 50 pixels. The wavelet was used for both Wi(x,y) and w2(x,y), both 
with a = 0.6, and a\ = 0.7 and a2 = 1.2. The output plane of the correlator is shown in Figure 4.8 
with the grayscale inverted for display purposes. The output consisted of nine responses; the three 
in the center were clipped because of their large value due to the autocorrelation responses and 
overlapped each other so one large spot appeared. The autocorrelation responses also overlapped 
the responses immediately next to the autocorrelation responses. The two remaining responses on 
the right hand side of Figure 4.8 were expanded and shown in Figure 4.9. The response on the right 
corresponded to a2 = 1.2 and the one on the left corresponded to the sum of ai and a2. Changing 
ai to ai = 1.0 changed the response on the left but not on the right as shown in Figure 4.10. A 
small part of the correlation between the image and the wavelet with associated with a\ can be seen 
in the left side of the image. Rotating the input image simply rotated the output image because of 
the circular symmetric nature of the wavelet as shown in Figure 4.11. 
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Figure 4.7: Image used in simulation experiments. 

Figure 4.8: Output plane of multispectral simulation experiment. 
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Figure 4.9:  Close-up view of right hand side of Figure 4.8.   Response on right is for a2 

response of left is for a\ + 02, where 01 = 0.7. 
1.2, 
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Figure 4.10: Response on right is for a2 = 1.2, response of left is for ai + a2, where oi - 1.0. 

4.3.1    Implementation in Optics 

To implement the multiple-input JTC optically a few points must be considered. One is the removal 
of the DC from the wavelet image. Wavelets have zero mean, so the wavelet image cannot be used 
directly. One solution is to display the wavelet in phase;[33] however, we proposed to use a DC 
block arrangement. 

Because more than one scale of a wavelet is used in our arrangement, multiple wavelet images 
are needed; one for each scale of the wavelet used. Displaying multiple images on an SLM would 
increase the space-bandwidth product of the system, so we proposed to use conventional optics to 
produce different versions of the wavelet at different scales. Similarly for copying the input image. 

A proposed multiple-input JTC configuration for the multispectral example was shown in Figure 
4.12. It used an input SLM to display an input image and wavelet image as in a conventional JTC. 
The DC of the wavelet could be eliminated using a DC block in the Fourier transform plane of a 
telescope arrangement. The scale of a wavelet could be adjusted by varying the focal length of lenses 
in another telescope arrangement. Neutral density filters may be used to adjust the amplitude of 
the wavelet. The input lens in the JTC must capture all images, but a detector is required for only 
a portion of the output plane. 
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Figure 4.11:  Response when input image was rotated by 90 degrees.   Response on right is for 
Ü2 = 1.2, response of left is for a\ + 02, where ai = 1.0. 
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Figure 4.12: Schematic diagram of multiple-input JTC used for multispectral analysis using two 
wavelet scales. 
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4.4    Discussion 

We showed how a multiple-input JTC can be used for multispectral analysis of an input image. 
An input image and wavelet image are required as inputs. For m wavelet scales, m versions of the 
wavelet and m copies of the input image generated using conventional optics are used as inputs to 
a JTC. The output consists Am - 1 correlation results, one of which is the desired output. The 
space-bandwidth product of the system is the same as for a conventional JTC. 

The JTC was simulated using two wavelet scales and 2 identical input images. The wavelet 
used was a circularly symmetric for rotation-invariance. Rotation of the input image resulted in 
rotation of the output cross correlation image. 
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CONCLUSIONS 

We have demonstrated a binary-input spatially multiplexed parallel optical system capable of im- 
plementing a RBF classifier. The system was trained using 600 handwritten digits 0-9, and tested 
on a disjoint set of 300 digits. The optical system computes the Euclidean distances between a 100 
bit input vector and 198 centers in parallel. Our experimental results show that training the RBF 
network in the presence of optical imperfections and noise versus training the network 'off-line' can 
improve the testing recognition rate by nearly 60%. When the network is trained 'off-line' and 
then tested on data from the optical system its recognition rate is 31.0% which agrees well with 
our computer model's prediction of 29.0%. The testing performance improves considerably when 
the network is trained 'on-line', using data from the optical system. The experimental recognition 
rate of 92.67% agrees well with our model's prediction of 94.67% for the adaptive case. In order to 
implement a real-time system it is necessary to replace the film masks with dynamic SLMs and to 
design and fabricate an electronic adaptive postprocessor. The primary error source in our system 
arose from the LCLV used for contrast-reversal. The use of an alternative device is recommended 
for higher performance and reliability. 

The performance of the binary-input optical system demonstrated here is limited primarily by 
the response time of the contrast reversing SLM. In our case the Hughes device was limited to 
operation at a page rate of 10 Hz. Utilizing a fast contrast-reversing SLM (e.g., FLC LCLV [34]), 
would increase the system clock to nearly 250 KHz, resulting in an aggregate computation rate of 
nearly 20 billion binary operations per second. Although it is straightforward for one to perform 
the RBF postprocessing functions at this rate using digital electronics, maintaining a minimum 
signal-to-noise ratio of 100 requires the total optical power to be increased to approximately 0.52 
W to accommodate the SLM sensitivity and detector integration time at 250 kHz. The performance 
of such a modified system is competitive with existing all-electronic solutions and can be further 
improved through the use of a two-dimensional input SLM together with higher dimensional centers 
masks. 

The first layer of the neural network is composed entirely of parallel processing optics and has 
been demonstrated for the binary-input classifier. An electronic postprocessor that implements the 
second layer of the neural network must be fabricated to realize the system's full potential. Two 
postprocessors versions have been proposed for this system, a simple nonadaptive version and a 
more complex adaptive version for on-line learning. The nonadaptive processor will be considerably 

36 



easier to design, fabricate, and test. It is therefore desirable to develop and test the nonadaptive 
chip prior to designing the full-scale adaptive processor. The results of this design study will aid 
in the design of future adaptive processors for the in-house system. 

The next effort in developing the computer model for the grayscale classifier is to incorporate 
the grayscale SLM parameters into the computer simulations after the devices have been obtained 
and characterized. The optical portion of the system is then to be fabricated and compared to the 
computer model. 

We described the optical architecture for a multiple input JTC which performs a multiscale 
analysis using two wavelet scales. This system will be the focus of future preprocessor work. 

One future area of research will be to extend the adaptive optical radial basis function neural 
network classifier to permit analog and complex-valued input signals. Many signal and image 
processing applications are best approached by analyzing the inherently complex-valued frequency- 
domain data. Recent studies have shown that complex-domain neural networks out-perform real- 
domain neural networks in applications that require the processing of frequency-domain or phase- 
plane data[35, 18]. One particular application of this proposed complex-input system is radar 
direction finding. 

A new antenna beamforming approach 'neural beamforming', has been developed at Rome 
Laboratory by researchers Major Jeffrey Simmers and Dr. Hugh Southall of RL/ERAS and Terry 
O'Donnell from the ARCON Corporation [14, 15, 16, 17]. Their goal is to design neural processing 
algorithms that can adapt to low cost phased-array antennas, even if the antennas behave in a 
nonlinear manner, are imperfectly manufactured, or become degraded after some period of time. 
Neural beamforming techniques can decrease antenna manufacturing and maintenance costs and 
increase mission time and performance between repair actions. Their work has focused on signal 
detection and direction finding for single and multiple sources (targets). 

The group has presented two neural beamformers, both based on RBF neural networks. Al- 
though other neural network paradigms have been previously considered the RBF approaches pro- 
vide the best overall performance. Both an adaptive RBF (ARBF) network and a linear algebra 
RBF (LINNET) network training algorithm have been employed in the beamforming application. 
Most of their work has centered around the adaptive RBF neural beamformer that uses a training 
procedure similar to one used for our adaptive optical system. The input to the neural beamformer 
consists of complex-valued data from the output of a 32 element phased-array antenna. It should be 
noted that it is desirable to perform that direction finding at MHz data rates and military phased 
array antennas typically have between 200 and 1000 antenna elements. These data processing rates 
are not attainable with current or near-term sequential computer hardware systems. The group is 
now beginning to search for parallel processing hardware in order to meet this signal processing 
demand. An analog adaptive optical RBF classifier system may present a viable solution to this 
large, real-time problem. 
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OF 

ROME LABORA TOR Y 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


